

Tetrahedron Letters 41 (2000) 271-274

TETRAHEDRON LETTERS

The synthesis and functionalisation of quinuclidine enamine *N*-oxide and borane complex

Ian A. O'Neil,^{a,*} Duncan Wynn^a and Justine Y. Q. Lai^b

^aDepartment of Chemistry, University of Liverpool, Crown St, Liverpool L69 7ZD, UK ^bRhône-Poulenc Rorer, Rainham Road South, Dagenham, Essex RM10 7XS, UK

Received 23 September 1999; accepted 26 October 1999

Abstract

The synthesis of quinuclidine enamine *N*-oxide and quinuclidine enamine borane complex is described. Selective deprotonation of the double bond allows the direct functionalisation at the α -position with a range of electrophiles. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: carbanions; N-oxides; enamines; boron; boron compounds.

The quinuclidine nucleus is the core component of the cinchona alkaloids, a family of natural products, which not only exhibit antimalarial activity but have also found widespread use in numerous asymmetric transformations.¹

We recently reported the use of quinuclidine *N*-oxide as a potential replacement for hexamethylphosphoric triamide (HMPA) in a number of synthetically important reactions.² In order to increase the scope of this reagent system we envisaged that the incorporation of additional metal binding sites α to the nitrogen would increase the metal binding capability of these reagents. In addition, we were intrigued by the possibility of linking two quinuclidine units together to yield a dimeric species such as compound **2**, which would almost certainly possess enhanced metal binding properties. One potential building block for **2** was the enamine *N*-oxide **1** shown in Fig. 1. Examination of the literature showed that this was an unknown compound, although the parent enamine has been prepared and studied by Grob.³ We predicted that selective deprotonation of enamine *N*-oxide **1** at the unsaturated α carbon should be possible, allowing for the functionalisation of this position. Subsequent dimerisation should then be possible if appropriate functionality had been incorporated.

^{*} Corresponding author. Tel: 0151 794 3485; fax: 0151 794 3588; e-mail: ion@liv.ac.uk (I. A. O'Neil)

^{0040-4039/00/\$ -} see front matter © 1999 Elsevier Science Ltd. All rights reserved. P1I: S0040-4039(99)02033-X

Enamine *N*-oxides have been prepared previously;⁴ however, they have been reported to undergo fragmentation reactions on treatment with strong bases. In the example shown in Scheme 1, deprotonation of **3** presumably occurs on one of the methyl groups, subsequent fragmentation to yield an iminium salt, followed by hydrolysis to give cyclohexanone and formaldehyde.

(3)
$$\stackrel{\bigoplus}{\bigcirc}$$
 $1. \text{ nBuLi}$ $\stackrel{\bigcirc}{\frown}$ + HCHO

Scheme 1.

In our approach to dimers such as 2 we have synthesised the enamine *N*-oxide 1 from commercially available 3-hydroxyquinuclidine using the route outlined in Scheme 2.

$$(4) \qquad (5) \qquad (KO'Bu, THF) \qquad (KO'Bu,$$

Scheme 2.

Thus, tosylation of 3-hydroxyquinuclidine **4** followed by *N*-oxidation proceeded smoothly to give the *N*-oxide **5**. Treatment of the *N*-oxide **5** with 1 equiv. of KO^{*t*}Bu at -78° C, followed by warming to room temperature, furnished the desired enamine *N*-oxide in good yield. *N*-Oxide **1** is a colourless, hygroscopic solid. It is conveniently dried and stored over P₂O₅. The ¹H NMR of **1** in CDCl₃ showed two characteristic vinyl protons at δ 6.71 and 6.48, the low chemical shift of these protons indicating the powerful inductive effect of the nitrogen.⁵

We also found that the corresponding borane complex of the enamine could be prepared by an analagous route (Scheme 3).

Scheme 3.

Having established a reliable protocol for the synthesis of 1 and 7 we next examined their deprotonation.^{6,7} Treatment of 1 or 7 with 1 equiv. of ^{*t*}BuLi at -78° C in anhydrous THF gave the vinyl carbanions 8 or 9. Quenching of these species with a suitable electrophile yielded the 2-functionalised quinuclidine enamine derivatives (Scheme 4).

A range of electrophiles were examined. In each case the ¹H NMR spectrum showed that the vinyl signal at δ 6.71 due to the proton adjacent to the quinuclidine nitrogen had disappeared. The results are summarised in Table 1. With non-enolisable ketones and aldehydes (entries 2, 4 and 5) the yields of the

Entry	Substrate	Electrophile	Product	% Yield
1		Br ₂	N-O D-O	74
2	(JZ [⊕] O	PhCHO	Ph N-⊙ OH	78
3	Æ ² -°	Bu₃SnCl	N⊕ SnBu ₃ O ⊙	75
4		Ph Ph	Ph Ph OH OH	60
5		°,	€ 0 ⊕ 0	85
6	∑×⊕ 0	O Ph [⊥] CH ₃	Ph ⊕N ← CH ₃ ⊖O OH	20
7	⊕ BH3	O Ph Ph	⊕ BH ₃ OH	81
8	⊕ BH ₃	I ₂		86
9	€ BH3	Bu ₃ SnCl	⊖ ^{BH} 3 SnBu 3	56

 Table 1

 Reactions of 2-lithio quinuclidine enamine N-oxide and borane complex

addition products are good. These products are generally stable crystalline materials with the *N*-oxide oxygen hydrogen bonded to the OH group. The lower yield with acetophenone is most likely due to competing enolisation. The introduction of heteroatoms (entries 1, 3, 8 and 9) again went in good yield.

In summary, we have prepared the quinuclidine enamine N-oxide **1** and the quinuclidine enamine borane complex **7** in good yield. Both of these species have been shown to undergo clean lithiation at the vinylic position and the resulting carbanions can be trapped out with a range of electrophiles. We are currently examining the coupling reactions of these functionalised quinuclidines in the construction of dimeric species.

Acknowledgements

ION would like to thank Rhône-Poulenc Rorer for their generous support of this work.

References

- Dehmlow, E. V.; Wagner, S.; Muller, A. *Tetrahedron* 1999, 55, 6335–6346. Lygo, B.; Wainwright, P. G. *Tetrahedron Lett.* 1998, 39, 1599–1602. Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414–12415. Hoffmann, H. M. R.; Plessner, T.; von Reisen, C. Synlett 1996, 690–692.
- 2. O'Neil, I. A.; Lai, J. Y. Q.; Wynn, D. Chem. Commun. 1999, 59-60.
- Grob, G. A.; Kaiser, A.; Renk, E. Helv. Chim. Acta. 1957, 40, 2170–2185. Doering, W. von E.; Birladeanu, L.; Andrews, D. W.; Pagnotta, M. J. Am. Chem. Soc. 1985, 107, 428–432.
- 4. Krouwer, J. S.; Richmond, J. P. J. Org. Chem. 1978, 43, 2464-2466.
- 5. Data for azabicyclo[2.2.2]oct-2-ene *N*-oxide (1): $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.83 (2H, m, N–CH₂CHH), 1.99 (2H, m, NCH₂CHH), 2.85 (1H, m, CH), 3.30 (2H, m, N–CHH), 3.56 (2H, m, N–CHH), 6.48 (1H, t, *J*=7 Hz), 6.71 (1H, d, *J*=7 Hz). $\delta_{\rm C}$ (75 MHz, CDCl₃) 29 (CH), 31 (N–(CH₂)₂–(CH₂)₂), 70 (N–(CH₂)₂), 134 (N–CH=CH), 151 (N–CH=CH). MS(CI) [M+H]⁺ *m/z*: 126.09167; C₇H₁₂NO requires: 126.09189.
- 6. For a recent review on α-heteroatom-substituted 1-alkenyllithium reagents, see: Brown, M. Angew. Chem., Int. Ed. **1998**, 37, 432–451.
- 7. For a recent example of the deprotonation of tertiary amine borane complexes, see: Ariffin, A; Blake, A. J.; Ebden, M. R.; Li, W. S.; Simpkins, N. S.; Fox. N. A. *J. Chem. Soc.*, *Perkin Trans. 1* **1999**, 2439–2447, and references cited therein.